New radio telescope in Birr detects huge solar storms

Dublin, Thursday September 13th, 2017 – The past two weeks have been nothing but stormy for the Sun, and the recently installed LOFAR radio telescope in Birr has been key to helping scientists keep an eye on weather conditions on our stormy stellar neighbour and to forecasting its effects here on Earth.

On September 3, 2017 a huge group of sunspots, many times the size of the Earth, appeared on the surface of the Sun, and have been producing solar storms and spectacular displays of northern lights ever since.

“This sunspot group has unleashed one of the the largest flares in over a decade and one of the biggest in the last 40 years”, according to Professor Peter Gallagher, a solar physicist in the School of Physics at Trinity, “And we detected another whopping solar storm last Sunday, which was moving at about 3,000 km/s and arrived at Earth last night [September 12].”

Solar flares are huge bursts of radiation that can release energies equivalent to billions of hydrogen bombs in several minutes and can be associated with ejections of hot clouds of gas into space at millions of kilometers per hour. While solar storms can produce beautiful displays of the northern lights, they can also cause problems in the communication and navigation systems that we use as part of our every-day lives.

The Irish LOFAR radio telescope at Birr Castle which is being used by scientists to monitor solar storms and their effects on Earth. Credit: Peter Gallagher (TCD).

“The recent solar storms have reportedly caused problems with radio communications systems used by first responders dealing with the fall-out of Hurricane Irma in the US.” says Prof. Gallagher. “We have been using our instruments at Birr Castle to monitor this activity and its effects on the Earth’s upper atmosphere and magnetic field.”

Key to monitoring this increased solar activity has been the recently installed Irish Low Frequency Array (I-LOFAR) radio telescope at Birr, Co. Offaly.

Research Fellow at Trinity, Dr Diana Morosan, said: “I-LOFAR uses hundreds of sensitive antennae to detect bursts of radio waves from solar flares and solar storms. I-LOFAR is enabling us to observe the Sun with greater accuracy than ever before and therefore to better understand its effects on our planet and on the technologies we depend on every day.”

The top image shows a NASA Solar Dynamics Observatory (SDO) image of the September 10, 2017 X8.3 flare. A burst of radio waves associated with the flare was observed by I-LOFAR at Birr Castle, while NASA’s Fermi Gamma-Ray Telescope detected a bright flash of high energy X-rays. Credit: Laura Hayes & Peter Gallagher (TCD).

But these are early days for I-LOFAR operations, and as the team learns how to operate the array on its own and as part of the International LOFAR Telescope, we are expecting many new astronomical discoveries from Birr, Co. Offaly.

About I-LOFAR: The Irish LOFAR Telescope is an array of antennas that observes astronomical objects at 10-90 and 110-240 MHz. The I-LOFAR Consortium includes TCD, Armagh, UCD, NUIG, UCC, DCU, DIAS and AIT. I-LOFAR has been supported by Science Foundation Ireland and the Department of Business, Enterprise and Innovation and was formally switched on by the Minister of State for Training, Skills, Innovation, Research and Development, John Halligan T.D on July 27, 2017. I-LOFAR’s fibre link is sponsored by open eir. Further information on I-LOFAR can be found at www.lofar.ie.

Media Contact: Professor Peter Gallagher, peter.gallagher@tcd.ie, +353 87 656 8975.

ILOFAR Layout is Rolled Out!

Looking back across what resembles a mini Sahara desert atop a plinth, speckled with little coloured rods that wouldn’t look out of place in a Willy Wonka wonderland, we are struck by the sudden emergence of the silhouette of what will soon be our LOFAR station.

Last week saw the outset of the station layout in Birr, Ireland. The efforts were led by our surveyor from Astron, Edwin Busch and our very own Joe McCauley. We also had two willing students on-site, Aoife Ryan and Hannah Currivan. The mission, should they decide to accept it, was to place over 800 50cm plastic rods into the ground. Easy you might say? Far from it!

There were three different coloured rods for both the HBA and LBA fields. Each colour denoted a different function (cable exit, cable entry, trench position etc.). Some of the rods even had a specific number to indicate the number on HBA tile that would soon replace it. Let the games begin!

Edwin had the coordinates and he, along with his GPS range pole, directed us to each of our 800 positions throughout the two fields. Each rod had to be placed with centimetre accuracy. It became apparent all too quickly that the mission to “place” each rod in the ground was going to be the challenge of all challenges. Unfortunately our lovely mound of dirt on which the state of the art LOFAR station is to be built is predominantly small rocks, stone and compact dirt as opposed to the lovely sandy soils of the Netherlands where this method was perfected. Cue the power drill!! Hauling around a generator we drilled each of the holes in the ground, “placed” the correct rod and hammered it securely into the ground…800 times.

 
It was a tough four days, of blisters, hard hats and suncream, but it was so very worth it!! With the markers now in place we can look forward to the next LOFAR chapters full of trenching, cable laying and antenna building this summer in Birr.

Professor Peter Gallagher made Chevalier by the French Government

At a presentation at the French Ambassador’s Residence in Dublin, Professor Peter Gallagher from the School of Physics was invested as a Chevalier des Palmes Académiques/Knight of the Order of Academic Palms.

Originally a decoration founded by Emperor Napoléon in 1808 to honour eminent members of the University of Paris, the Chevalier des Palmes Académiques is a national order of merit of France for distinguished academics and figures in the world of culture and education. The Chevalier award recognizes Professor Teeling’s and Professor Gallagher’s contributions to scientific research here and around the world.

Peter is a Professor in Physics and Associate Dean of Research at Trinity College Dublin, where he runs a large research group focusing on understanding solar activity and its effects on the Earth. He was recently appointed as an advisor to the Director of Science at the European Space Agency’s Headquarters in Paris, and is currently building Ireland’s first research-grade radio telescope at Birr Castle Demesne in Co. Offaly, supported by Science Foundation Ireland.

Peter shared the honour with his wife, Professor Emma Teeling who was also invested as a Chevalier des Palmes Académiques/Knight of the Order of Academic Palms at the same event. Emma is a Professor in Zoology and a member of the Governing Authority at University College Dublin. Emma holds a prestigious European Research Council grant for her research using bats as a model to uncover the biological basis of healthy ageing. Much of her team’s field-work is based in Brittany, France in collaboration with the conservation organisation Bretagne Vivante. Professor Teeling is a member of the Royal Irish Academy and on the board of the Irish Research Council.

Trucking for Science – from the Netherlands with LOFAR

Our extra-terrestrial trucker, Dr Ryan Milligan, made the first collections of parts for the Irish LOFAR telescope from the Netherlands this week. Here he tells us about his astronomical haul from the Netherlands to Birr, Co. Offaly in the Irish Midlands.

When else would a PhD in astrophysics and a truck driving licence be of use? When you are collecting a huge radio telescope of course! Well, this week I-LOFAR team member and truck driver, Dr. Ryan Milligan, collected the first shipment of parts for the Irish LOFAR station from ASTRON in the Netherlands.

Ireland will soon have it’s very own LOFAR radio telescope, which will connect Irish astronomers to the huge International LOFAR Telescope. The international telescope is made up of a thousands of antennas spread across Europe and is being used by Europe’s leading scientists to study the early universe, exploding stars, the Sun and to search for new planets. With the new Irish station, LOFAR will stretch nearly 2,000 km from Ireland to Poland.

And as the luck of us Irish would have it, we have our very own truck-driving astrophysicist, Dr. Ryan Milligan. Ryan has a PhD in astrophysics from Queen’s University Belfast, and has spent most of his career working with NASA Goddard Space Flight Center.

But before this, Ryan was a truck driver, hauling all kinds of loads for the family fish business in Co. Down. “I still love driving trucks now and again”, according to Ryan. “There’s nothing more relaxing than few days on the road in a Scania with AC/DC at full volume”.

@ryanomilligan: We’re loaded up! Bit of a change of plans but we’re on the road. Now to make it to Zeebrugge in time for the boat back to Dublin …

Ryan was actually Professor Peter Gallagher’s first PhD student back in his NASA days. “I was building a radio telescope and we needed a truck driver, so no better man than Ryan”, said Peter, who is leading the Irish LOFAR station build.

This week is a huge week for the I-LOFAR consortium, as we look forward to receiving the first delivery of parts for the Irish LOFAR station. With the help of our transport partners, Foremost Freight and Noel Howley Logistics, let’s hope all arrives in ship-shape at Birr Castle on Friday.

You can follow the rest of Ryan’s astronomical haul at @ryanomilligan and @i_lofar.

@ryanomilligan: Today was a welcome respite after the insanity of yesterday during the @I_LOFAR haul. Extended update now available: https://youtu.be/jO5KaA4F5KE

RTE News website

A member of the I-LOFAR consortium has won €2 million in funding from the European Research Council to study the birth of stars and planets.

Professor Tom Ray from the Dublin Institute of Advanced Studies (DIAS) won the prestigious Advanced Grant against stiff opposition from all over Europe.

The study will involve furthering Prof’s work in the area of exploring what the Solar System would have looked like 5 billion years ago when it began to form.

The proposal, named “Ejection Accretion Structures in Young Stellar Objects” or EASY will use cutting edge observational instruments like the James Webb Space Telescope, the European low frequency radio telescope LOFAR and the facilities of the European Southern Observatory, to improve our understanding of the complex processes involved.

This money will also be used to pay seven researchers at DIAS.

The organisation said the win was a vindication of its vision of the pursuit of excellence and curiosity-driven research.

“These awards are among the most highly sought after in Europe and are extremely difficult to win,” said Graeme Horley, SFI Programme Manager and ERC National Contact Point.

This article was first published on the RTE News website.

 

 

ILOFAR Groundworks Progress

In unseasonably favorable weather, the footprint for the latest LOFAR station (IE613) emerges from the ground at Birr Castle, Ireland. The ground levels are being raised by local contractors, Conneeley Building & Civil Engineering, to counter risks to the array posed by flooding.
Deployment of the antennas is scheduled to begin in spring 2017 after a pause for winter. IE613, when operational, will extend the international LOFAR base line to almost 1950km. Commissioning is expected to be completed in the autumn of 2017.

I-LOFAR Consortium meeting

The I-LOFAR Consortium meeting in the Dining Room of Birr Castle under the portrait of the 3rd Earl. Representatives in attendance from DIAS, UCD, ICHEC, TCD, UCC, NUIG, Armagh, Birr Castle, and the Latvian LOFAR team.

Astronomers open new window into stellar radio astronomy with LOFAR

A research group at the Dublin Insitute for Advanced Studies (DIAS) has recently used LOFAR to detect T Tau, a young sun-like star. This is the lowest frequency detection of a young stellar object to date, and the first ever detection of a young star with LOFAR. This detection was made possible by combining the next-generation quality data produced by LOFAR with high performance computing provided by DIAS and the Irish Centre for High End Computing (ICHEC). Observing young stars at these extremely low frequencies offers new ways to characterise their radio emission and paves the way for investigating the formation of stars like our Sun with future radio telescopes such as the Square Kilometer Array.