LOFAR Minecraft – LOFAR Enters the Virtual Universe

LOFAR Minecraft

Fionn (11) and Luke (8) Teeling-Gallagher have been busy building an international LOFAR radio telescope in Minecraft. Click on the movie above to learn all about how it works. 

The Astronomical Midlands: Engaging Rural Communities with Astronomy

We are delighted to launch a new engagement project in 2019 – the Astronomical Midlands or AstroLands for short – that uses the recently constructed Irish Low Frequency Array (I-LOFAR) and Education Centre at Birr Castle Demesne to connect with students, teachers and members of the public in rural communities in the Midlands.

Astronomical Midlands, funded by Science Foundation Ireland Discover Programme, embarks on three key initiatives:

o Space4Exploration: Create an engaging, inspirational and multi-use space in the I-LOFAR Education Centre.

o Space4Students: Launch day-long and week-long space camps at the Education Centre that run during school term and school holidays for students aged 10 to 14.

o Space4Teachers: Create CPD workshops for upper primary and lower secondary school teachers based around the National Junior Certificate themes of Earth and Space.

Astronomical Midlands is overseen by our Project Manager, Áine Flood and Project Scientist Prof Peter Gallagher. We are also recruiting “Astronomical Ambassadors” to interact with visitors to Birr and to deliver space camps and teacher workshops.

Astronomical Midlands opens new conversations with groups that have had little involvement with STEM using our unique facility at Birr. Our project allows people in the Midlands to discover opportunities for further education and careers in STEM and inspire the next generation of scientific explorers.

Astronomical Midlands is go for launch from February 2019!

 

Offaly County Council confers Civic Recognition Award on Professor Peter Gallagher

Press Release from Offaly County Council:

Professor Gallagher received the award at a Civic Reception in Offaly County Council on Monday, 16th October 2018. The special event was attended by Professor Gallagher’s family, colleagues and guests from the worlds of science, academia, tourism, enterprise and local development. Among the guests were Lord and Lady Rosse, Lady Alicia Clements of Birr Castle, and Mr. Joe Hogan of Openet.

At the Civic Reception, Offaly County Council Cathaoirleach Cllr. Danny Owens informed the attendees that the decision to confer a Civic Recognition Award is a reserved function of Offaly County Council. It is an acknowledgement of a person’s outstanding contribution to the County.

The Civic Recognition Award acknowledges Professor Peter Gallagher’s outstanding contribution to the County; leading the €2m I-LOFAR project in Birr, developing the I-LOFAR Education Centre in conjunction with Offaly County Council, and for on-going work to develop collaborative research and discovery in Offaly.

Cathaoirleach Cllr. Danny Owens spoke of Birr’s rich astronomical heritage, a worldwide reputation that is a great source of pride for Offaly people. The selection of Birr as the location for the new I-LOFAR radio telescope marks a new chapter for scientific endeavour in Offaly.

I-LOFAR is the Irish Station in a European wide network of state-of-the-art radio telescopes. The telescope is used to study celestial objects such as the sun, black holes and magnetic fields.

In addition to the benefits of having a cutting-edge science project in Offaly, having the I-LOFAR telescope in Birr opens up new possibilities for research, jobs, tourism and science education.

Offaly County Council’s Chief Executive Ms. Anna Marie Delaney acknowledged Professor Gallagher’s willingness to collaborate and work with Offaly County Council and others to harness the economic potential of I-LOFAR. Ms. Delaney outlined a number of projects where Professor Gallagher had generously given of his time, including the development of the I-LOFAR Education Centre and a field trip to ASTRON (the Netherlands Institute for Radio Astronomy).

Professor Gallagher then gave an informative and engaging presentation on the I-LOFAR project and the opportunities for further development. Elected Members Cllr. John Carroll and Cllr. John Clendennen commended Professor Gallagher’s enthusiasm, work to date and drive to develop scientific discovery in Offaly.

Offaly County Council Cathaoirleach Cllr. Danny Owens then presented Professor Gallagher with a framed scroll and a specially commissioned piece of art to commemorate the Civic Recognition. The commissioned piece was designed and produced by LEO Offaly client Michelle O’Donnell of Glasshammer Studios. Radio images generated from the I-LOFAR telescope were used as inspiration for the piece.

MC and Director of Services Mr. Frank Heslin thanked all present and invited all to join the Members for refreshments in the Council atrium.

I-LOFAR is operated by Trinity College Dublin on behalf of the I-LOFAR Consortium. It is supported by Science Foundation Ireland, the Dept of Business, Enterprise and Innovation, Offaly Co Co, and many others.

First Pulsar Light with I-LOFAR!

Pulsars are rotating neutron stars that beam radiation into space like rapidly rotating lighthouses. Last week a team of scientists from Ireland and the UK used I-LOFAR and a new Dell-EMC cluster called the “REALtime Transient Acquisition Cluster (REALTA)” to observe our first pulsar, B0950+08.

The plot below shows the first thirty seconds of an observation of pulsar with the I-LOFAR station at Birr, Co. Offaly. Signals that travel through the interstellar medium are delayed in a frequency-dependent way as they travel to Earth – the greater the distance the greater the delay. Here we recorded data from the direction of this pulsar and compensated for a range of different delays.

First pulsar light with I-LOFAR! Pulses detected every ~253.0638 milliseconds.

Every pulse detected is shown as a dot and the stronger the pulse the larger the dot. We can see a number of very strong pulses peaking at the delay corresponding to a distance of 260 parsec which is about 850 light years. This is the distance of the pulsar, and further examination of the time between the pulses shows that they come periodically every 253.0638 milliseconds – this is the rotation rate of the pulsar – there are about 4 pulsar ‘days’ every second for this star. This sounds extreme but it is in fact quite typical for a pulsar – the very fastest pulsar we know of spins 716 times per second with the ‘slowest’ taking 23.5 seconds to rotate once.

This is the first pulsar to be detected with I-LOFAR and marks the beginning of pulsar observing at the site. When fully up and running it should be capable of monitoring a hundred or so pulsars regularly.

Pulsar pulses act like the ticks of very precise clocks spread throughout the Milky Way. By monitoring these clocks one can study effects of gravity, high-density neutron star physics, the composition and structure of the Milky Way and much more besides.

These exciting investigations into fundamental questions of physics will be pursued from the I-LOFAR station, situated in the grounds of Birr Castle, and the performance is expected to improve. I-LOFAR’s sensitivity is best straight up and falls off towards the horizon, and this pulsar only ever gets as high as 45 degrees above the horizon. So the sensitivity in this direction is half the maximum, and for this first observation only one quarter of the available bandwidth was used reducing the sensitivity in half again. This is only the tip of the iceberg!

The observations were obtained by a team including Evan Keane (Square Kilometre Array/Jodrell Bank), Joe McCauley, Peter Gallagher, Pearse Murphy and Brian Coghlan (TCD), Griffin Foster (Oxford/Berkeley/Breakthough), Paul Callanan and Luke Timmons (UCC), and Matt Redman and Nevenoe Guegan (NUIG).

I-LOFAR and REALTA are supported by research infrastructure grants from Science Foundation Ireland. REALTA is owned by UCC and NUIG and hosted at TCD’s Rosse Observatory.

Ireland’s Biggest Telescope Gearing up to Catch the Perseid Meteor Shower

This week the team at I-LOFAR has been excitedly undergoing preparations for the upcoming Perseid Meteor Shower. Saturday night, 12th August 2018, is due to have the highest level of meteor activity with an expected 10 meteors per minute!

What is a Meteor Shower?

Meteors, more commonly known as “shooting stars”, are in fact small pieces of rock that have broken away from asteroids or comets due to collisions or extreme heating caused by their tremendous velocities. The small rocks enter Earth’s atmosphere and the resulting drag or air resistance of the air particles leads to further heating. This heating produces a huge glow which we can observed from the ground. A “shower” of meteors is caused when a comet passes especially close to the Sun & Earth inducing a large amount of heating and break up. In the case of the Perseids, Earth is passing through the dust and debris left behind the comet Swift–Tuttle.

How does LOFAR Detect Meteors?

I-LOFAR is hoping to observe the Perseid Shower using two different methods.

1. The first is called “passive radar”. This uses radio antennae to detect reflections of military/aeronautical radar off the plasma trail of the meteor. I-LOFAR will be trying to observe the reflection from a French radar used to monitor satellite orbits, called GRAVES, at 145 MHz.

2. The second method of meteor detection is by measuring direct emission from plasma in tail below 60 MHz as was done here by the Long Wavelength Array.

I-LOFAR has also teamed up with scientists at Dunsink Observatory, in collaboration with the Nematode network, who are planning on observing the event using two optical cameras with 30×30 degree FOV looking south and southwest, as well as a Yagi all-sky antenna tuned to GRAVE at 145 MHz.

What will we Learn?

From these observations I-LOFAR hopes to to determine the number of meteors per minutes, how fast they were traveling, from where the originated and where they were going in the plane of the sky.

How can I Observe the Perseids?

The Perseids will be most active on the nights of the 11th-12th & 12th-13th August 2018 and can be see with the naked eye. Get as far away from light pollution as you can and simply look up! Count and see if you can get 10 in a minute. And don’t forget to tune back in the coming days to see how the I-LOFAR team got on!

For more information and live updates on progress, keep an eye on the @I_LOFAR, @DunsinkObs and @nemetodemeteor Twitter feeds.

Big Data Processing for I-LOFAR: REALTA

I-LOFAR is a true ‘big data’ project, and as part of the International LOFAR Telescope, is a pathfinder telescope to the future Square Kilometre Array telescope, which will create perhaps the largest dataset in the world (an exabyte per day!).

To date, the data processing capabilities of  I-LOFAR have not  been sufficient to allow the telescope study astronomy objects that vary rapidly. However,  members of the I-LOFAR consortium at UCC and NUIG have recently obtained SFI funding to create a data processing system that can intensively analyse  and rapidly store the data stream as it emerges from the telescope, giving I-LOFAR a new and powerful capability to study the transient radio sky.  The system, called the REALtime Transient Acquisition cluster (REALTA), builds on the heritage of the ARTEMIS system designed by the Oxford e-Research Centre.

In July 2018, a team from UCC, NUIG, TCD and Oxford/Berkeley team set up 5 Dell-EMC PowerEdge GPU/CPU blades and up to 300 terabytes of storage. Over the coming months, this will enable us to study a wide range of fascinating astronomy targets such as aurora in planetary atmospheres, pulsars, solar radio bursts, nova explosions, and fast radio bursts.

The I-LOFAR processing cluster was enhanced in March 2020 to assist in the Search for Extraterrestrial Intelligence (SETI), in collaboration with the Breakthrough Listen foundation and the Berkeley SETI Institute, by the addition of another compute node to the cluster. This machine is planned to be integrated to the REALTA system by hooking into the live station data stream and performing transient signal analysis in addition to any work being performed by observers on the existing REALTA compute nodes.

Technical specifications for REALTA can be found in the table below and more technical details on REALTA together with first results can be found in Murphy et al., Astronomy & Astrophysics, 2021.

 

* This 110TB is distributed across REALTA’s 4 compute nodes
Compute Nodes (x4) Storage Node BL Headnode BL Compute Node
Machine Name Dell Poweredge R740XD Dell Poweredge R730XD SuperMicro 1029U-TRTP2 SuperMicro 6049P-E1CR24H
CPU Model Intel Xeon Gold 6130 (2x) Intel Xeon E5-2640 v4 (2x) Intel Xeon Silver 4110 (2x) Intel Xeon Silver 4110 (2x)
CPU Clock Speed 2.10GHz 2.40GHz 2.10GHz 2.10GHz
No. CPU Cores (Threads) 32 (64) 20 (40) 16 (32) 16 (32)
RAM 256GB 256GB 93GB 96GB
Storage 210TB* 128TB N/A 144TB
GPU 16GB NVIDIA Tesla V100 N/A N/A 11GB NVIDIA RTX 2080Ti

The figure below shows the individual hardware components of REALTA on the right and how they are connected to the data stream from I-LOFAR on the left.

Block diagram for REALTA and I-LOFAR.

Block diagram for REALTA and I-LOFAR. Data recorded at the Remote Station Processing (RSP) boards are sent to the S1 fibre switch in the I-LOFAR container. Here the data are split into four ‘lanes’ where each lane contains the data from a maximum of one quarter of the beamlets from the observation. The four lanes of data are then sent over a fibre connection to the I-LOFAR control room where it is recorded by REALTA. Orange arrows indicate the data path along fibre connections. Blue arrows are 1 Gbps Ethernet links and red arrows show infiniband connectivity.The dotted orange line is a fibre link to the BL compute node currently under development.

I-LOFAR and REALTA are supported by an SFI Research Infrastructure grants. REALTA is owned by UCC and NUIG and maintained by TCD and DIAS.

Observing the Sun at the nanosecond scale with the I-LOFAR Transient Buffer Boards

Transient Buffer Boards (TBBs) are a part of I-LOFAR’s data computation hardware that allow signals from the sun, stars and other astrophysical objects to be recorded at one of the fastest time resolutions possible. They can show us how the sun and stars change at the nanosecond scale.

To do this, TBB data must be recorded to cluster of computers so that the large amount of data can be stored. The total amount of data all 12 of I-LOFAR’s TBBs can hold is 384 GB, which is only 5 seconds worth of observations if all 96 antennas are used. Not only does the cluster need to store large volumes of data, it has to write it fast enough so that it doesn’t get lost before more data comes in. The TBB data cluster in our control room in Birr writes data to a fast, 46 TB storage node.

The picture above shows the TBB cluster in the control room. While it may not look pretty, it offers researchers in Trinity College Dublin the chance to observe the fine structure of radio bursts from the sun at the highest time resolution that has ever been done before. This will allow them to solve unanswered questions about energy release and particle acceleration on the sun. The fat silver unit at the top (WN104) is the fast storage node where all the TBB data is stored while the smaller units beneath it will be used in the future to process this data to look for new phenomena in the sun’s atmosphere.

Ready for Space Explorers!

On June 5, 2018 we completed the refurbishment of our new I-LOFAR Education Centre & Control Room at the Rosse Observatory, Birr Castle, Co. Offaly.

The I-LOFAR Education Centre (design by Cooney Architects).

The Education Centre will be used to host groups of school children, university students, researchers, and tour groups interested in learning about the fascinating science and engineering of I-LOFAR. The Control Room contains computers to control I-LOFAR remotely and to processes the huge volumes of data that the array generates.
We’ve come a long way from the “Sheep Shed Control Room”!

We’re on the road to LOFAR … come on inside.

Groups or schools wishing to visit I-LOFAR can contact the reception at Birr Castle Gardens & Science Centre.
The refurbishment was carried out by building contracts Bracken & Sons (Offaly), Cooney Architects, consultant engineers Fitzsimons, Doyle & Associates, and project managed by Trinity College Dublin Estates & Facilities.
Funding for the project has been provided by the Rural Economic Development Zone (REDZ), Department of Culture, Heritage and the Gaeltacht, supported by Offaly County Council and the Offaly Local Enterprise Office.

The I-LOFAR Education Centre (June 2018).

TCD’s Joe McCauley and Eoin Carley in the I-LOFAR Control Room (June 2018).

The Mt. Palmer Barn (January 2014). What a mess!

“The Sheep Shed Control Room” (July 2010). The sheep are now long gone!

I-LOFAR used as part of the International LOFAR Telescope for the first time to Observe Flaring Star

The Irish LOFAR telescope at Birr reached a major milestone on March 6, 2018, when is was used for the first time to observe a nearby flare star called “CN Leo” as part of an International LOFAR Telescope (ILT) observing campaign.

The international team, which includes Irish astronomers Stephen Bourke and Aaron Golden, aim to “catch” a stellar flare exploding in the star’s atmosphere, and to use the I-LOFAR and ILT to understand how such flares evolve and how they compare to solar flares.

CN Leo is a small, red dwarf star about 7.9 light years away in the constellation Leo, and is likely to possess a planetary system. In fact, we now know that the vast majority of stars in the galaxy that have planetary systems that could harbour habitable planets orbit red dwarf stars like CN Leo, so a really important question to answer is whether or not such planets could survive the really very powerful stellar flares we see from many of these red dwarfs.

Studying the way in which such stellar flares occur and how they interact with their local environments using I-LOFAR and the ILT offers a new window on this important area of astronomy.

The I-LOFAR observations were taken as part of LOFAR proposal LC9_040 “A search for aurora on nearby flare stars using LOFAR”, and also involved simultaneous observations using the e-MERLIN radiotelescope in the UK, the Liverpool Telescope at the Roque de los Muchachos Observatory in the Canary Islands, and NASA’s Neil Gehrels Swift Observatory.

Stephen Bourke is based at the Department of Space, Earth and Environment, Onsala Space Observatory in Sweden, and Aaron Golden is at the School of Maths in NUI Galway, and is a visiting astronomer at the Armagh Observatory and Planetarium.

I-LOFAR is supported by Science Foundation Ireland, the Department of Business, Enterprise and Innovation and many others.

Introduction to Science, Operations and Data Analysis with an International LOFAR Station

School of Physics, University College Dublin, Belfield, Dublin 4, Ireland. 

January 8-10, 2018

Summary

This workshop will introduce researchers to LOFAR single-station science, operations and data analysis. The workshop will cover many aspects of an International LOFAR Station, from the capabilities of the station hardware to the software pipelines and science products that it produces.

Hands-on lab sessions will give attendees an opportunity to gain experience with data from an international LOFAR station. Students, postdocs, and staff are all encouraged to attend.

This workshop is supported by the Institute of Physics in Ireland.

Registration

If you would like to attend, please email John Quinn (UCD Physics). Please note that a registration fee of €50 will be payable at the meeting.

Software

All tutorials will be given using the Python programming language (Python v3.6 and v2.7). We recommend that you run Python using Jupiter and/or Spyder, which can be installed using Anaconda. Further details on how to install these packages can be found here. An excellent introduction to Python for the analysis of astronomical data can be found at Python4Astronomers.

Internet Access

Wifi access will be provided via eduroam. Please ensure that you have registered for eduroam by contacting your IT services at your home institution before arriving in UCD.

Exercises

Schedule

  • Day 1 (Jan 8): LOFAR hardware and observing capabilities

10:00 – 10:30 Arrival and coffee 

10:30 – 10:45 Welcome and workshop goals [Quinn/Gallagher]

10:45 – 11:30 Overview of I-LOFAR [McCauley]

11:30 – 12:15 International LOFAR Station Hardware [McKay]

12:30 – 14:00 Lunch

14:00 – 14:45 Science with an International LOFAR Station [Greissmeier]

14:45 – 15:30 Observing with an International LOFAR Station [Bourke]

15:30 – 16:00 Coffee

16:00 – 16:45 LOFAR Station Transient Search Backends  [Foster]

16:45 – 17:30 Overview of ILT [Zucca]

19:00 Dinner at the RaddissonBlue Stillorgan.

  • Day 2 (Jan 9): Single station data analysis

09:00 – 10:00 Introduction to Single Station Data Analysis [McKay, Griessmeier, McCauley, Carley]

10:00 – 10:30 Distribution of sample data (dynamic spectra, all-sky maps, etc) and software set up 

10:30 – 11:00 Coffee

11:00 – 12:30 Data analysis talks/tutorials

12:30 – 14:00 Lunch

14:00 – 15:30 Data analysis lab

15:30 – 16:00 Coffee

16:00 – 18:00 Data analysis lab

  • Day 3 (Jan 10): Single station data analysis

09:00 – 13:00 Data analysis lab

Workshop Venue

The workshop will be held at University College Dublin (UCD), which is located about 4km south of Dublin city centre.

The meeting venue will be room 2.32 in the School of Physics (Science Centre North, Building 65). Here is a Google map with the meeting venue.

While UCD offers a wifi service without registration, it is quite restricted, and it is strongly recommended that you use eduroam.

Accommodation

There are many other options for accommodation in Dublin so we suggest investigating
using an online service such as hotels.com.

Getting to UCD

From Dublin Airport get the Aircoach route 700 (http://aircoach.ie/timetables/route-700-dublin-airport-leopardstownsandyford). The cost of a ticket is €10 single or €16 return. Pickup points are located at Dublin Airport Terminals 1 & 2. Buses run every 15 minutes and take
about 45 minutes to get to UCD.
The UCD drop-off stop is indicated by the blue coach symbol in grid A9 on the UCD Campus Map linked above, while the pickup point for going to the airport is indicated by the blue coach symbol in grid B7.
Note: this service may also be used to get to the hotels listed above- there are stops outside both the Talbot Hotel and RadissonBlu. For the Mespil hotel get of at Leeson Street Bridge and walk along the canal to the hotel.
From Dublin City Centre, UCD is well served by Dublin Bus with service 39a (http://dublinbus.ie/Your-Journey1/Timetables/All-Timetables/39a-3/) entering campus and services 46a (http://dublinbus.ie/Your-Journey1/Timetables/All-Timetables/46a-21/) and 145 (http://dublinbus.ie/Your-Journey1/Timetables/All-Timetables/145-/) passing UCD campus and continuing on to also pass the RaddisonBluu and Talbot hotels. The fare is €2.85 and only coins (exact fare, no change given) are accepted as cash payment (a LEAP card may also be purchased).
Further information is available from the UCD website.