Observing the Sun at the nanosecond scale with the I-LOFAR Transient Buffer Boards
Transient Buffer Boards (TBBs) are a part of I-LOFAR’s data computation hardware that allow signals from the sun, stars and other astrophysical objects to be recorded at one of the fastest time resolutions possible. They can show us how the sun and stars change at the nanosecond scale.
To do this, TBB data must be recorded to cluster of computers so that the large amount of data can be stored. The total amount of data all 12 of I-LOFAR’s TBBs can hold is 384 GB, which is only 5 seconds worth of observations if all 96 antennas are used. Not only does the cluster need to store large volumes of data, it has to write it fast enough so that it doesn’t get lost before more data comes in. The TBB data cluster in our control room in Birr writes data to a fast, 46 TB storage node.
The picture above shows the TBB cluster in the control room. While it may not look pretty, it offers researchers in Trinity College Dublin the chance to observe the fine structure of radio bursts from the sun at the highest time resolution that has ever been done before. This will allow them to solve unanswered questions about energy release and particle acceleration on the sun. The fat silver unit at the top (WN104) is the fast storage node where all the TBB data is stored while the smaller units beneath it will be used in the future to process this data to look for new phenomena in the sun’s atmosphere.