Lesson Plan: Our Solar System to Scale ## **Duration: 35-40 mins** #### Learning objectives: - 1. Gain some insight into the correct magnitude of planets and stars - 2. Understand the actual distance in space vs condensed images - 3. Understand scientific inaccuracies that become mainstream #### Links to Curriculum: - E&S 1, E&S 3 Building Blocks - E&S 8 Sustainability - □ NoS 10 Science in Society | Activity | Procedure | Materials | Time | |---|---|--|------| | The Sun | Introductory conversation about
the sun, facts below | up to date sun images | 5 | | Planet size in the Solar
System | Using different balls to
represent difference in planets Assign student to each planet
and stand in order | Blue tac, tennis balls,
balloons, marbles,
bouncy ball
Which to use below | 5 | | Estimating distances in
the Solar System | Each student given a thin piece of paper Mark the Sun on one end and Neptune on the other Students mark where they believe the planets to be on the paper, in pencil | Thin, long strips of paper Pencil | 10 | | Actual distances in the Solar System | Use marker for the accurate positions overlayed on top of the student's guesses Fold paper in half, crease is where Uranus should be Fold in half between the Sun and Uranus, this new crease is Saturn Continue folding in half pattern getting closer to the sun for each planet remaining (example below) | Markers Actual distance image Calculating Solar system scale | 5-10 | | Class discussion | Average solar system poster vs
more accurate Is the actual distance different
from what you expected? | More accurate solar system poster if the moon were a | 10 | # If the sun projection's diameter is 2m then \dots | Planet | Scaled
Diameter
(mm) | Scaled
Diameter
(cm) | Suggested object | | |---------|----------------------------|----------------------------|--------------------------|--| | Mercury | 7 | 0.7 | (bluetack) | | | Venus | 17 | 1.7 | Marble | | | Earth | 18 | 1.8 | Marble | | | Mars | 10 | 1 | (bluetack) | | | Jupiter | 205 | 20.5 | Bouncy ball / Volleyball | | | Saturn | 167 | 16.7 | Bouncy ball | | | Uranus | 67 | 6.7 | Tennis ball | | | Neptune | 65 | 6.5 | Tennis ball | | ## Sample paper exercise: